

ULTRALIGHT LITHIUM-SULPHUR CELLS FOR SPACE APPLICATIONS: **OPPORTUNITIES AND BARRIERS** Géraldine PALISSAT Nice, 2nd of October 2018

PRESENTATION OF ARIANEGROUP

CONTEXT: ENERGY AND POWER REQUIREMENTS FOR SPACE

ULTRALIGHT LITHIUM-SULPHUR CELLS COMPETITORS

RESULTS ON OXIS ENERGY ULTRALIGHT CELLS

BARRIERS AND OPPORTUNITIES SPACE APPLICATIONS

ARIANEGROUPCOMPANY PRESENTATION

WORLD LEADER IN ACCESS TO SPACE

9,000

EMPLOYEES
IN FRANCE
& GERMANY

11

SUBSIDIARIES & MAIN AFFILIATES

50/50

JOINT COMPANY BETWEEN AIRBUS & SAFRAN €3 BILLION

ESTIMATED PRO FORMA SALES

CIVIL LAUNCHERS

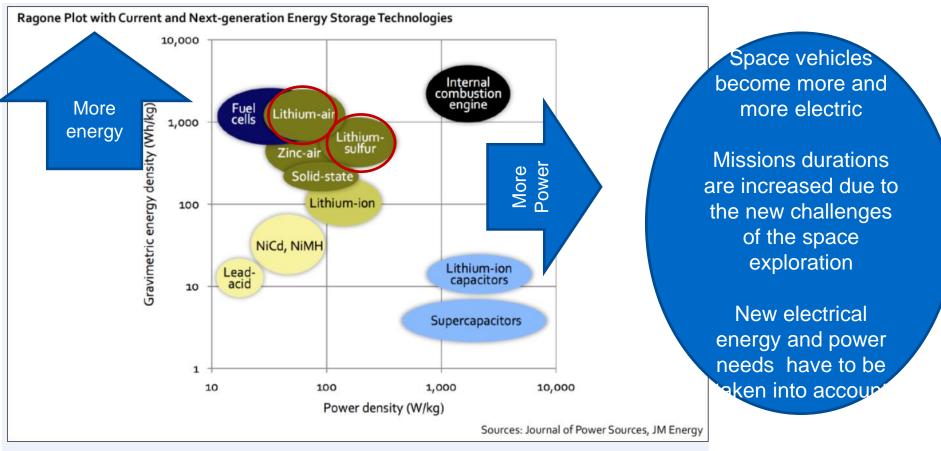
Ariane 5
Ariane 6
Launch services

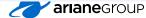
DEFENSE

► M51 program

EQUIPMENT & SERVICES

For satellites, spacecraft For launchers


For defence, security, critical infrastructures and industry



01 CONTEXT

CONTEXT: INCREASE OF SPACE APPLICATIONS REQUIREMENTS

CONTEXT: TECHNOLOGY CANDIDATES AND ASSOCIATED COMPETITORS

At the moment there is a strong interest by all stakeholders related or influenced by the battery markets on two systems:

- Secondary batteries based on Li-O₂ technology
- Secondary batteries based on Li-S technology

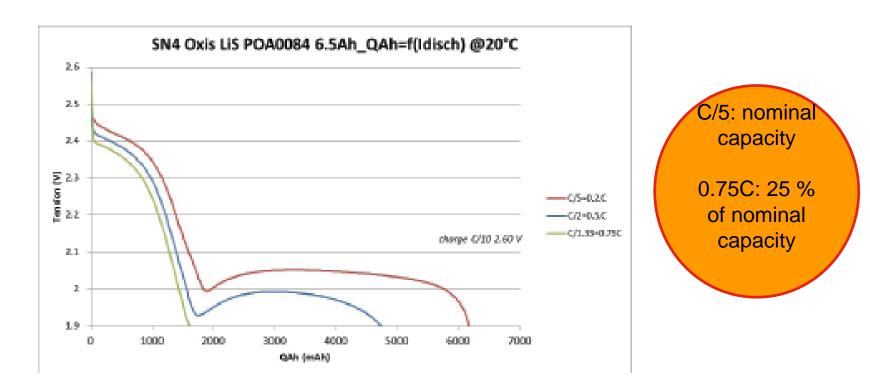
Li-S is believed to reach mass commercialization towards 2025 whereas Li- $\rm O_2$ is expected to be available in 2035

Therefore, discussions follow hereby are focused on Li-S and more particularly on ultralight cells for space applications.

02 ULTRALIGHT LITHIUM-SULPHUR CELLS COMPETITORS

ULTRALIGHT LI-S CELLS: MAIN SPECIFICATIONS COMPARISON

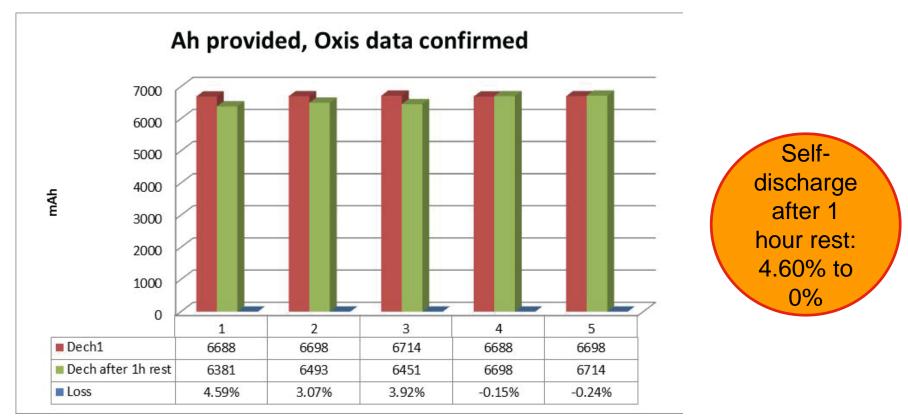
	Oxis Energy	Oxis Energy	Sion Power
Cell part Number	POA0084	POA0217	Licerion [®]
Nominal voltage (V)	2.1	2.1	2.1
Cell capacity (Ah) @0.2C - 20°C	6.5	12	20
Cell dimensionsLength (mm)Width (mm)Heigth (mm)	146 76 7	174 112 7.3	100 100 10
Cell mass (g)	55	90	154
Specific energy (Wh/ kg)	248	300	500
Volumetric energy (Wh/ L)	180	197	1 000
Operating temperature (°C)	[5; 30]	[5; 30]	TBD
Cycles	100 - 200	100 - 200	450


Source: Oxis Energy datasheet and Sion Power datasheet

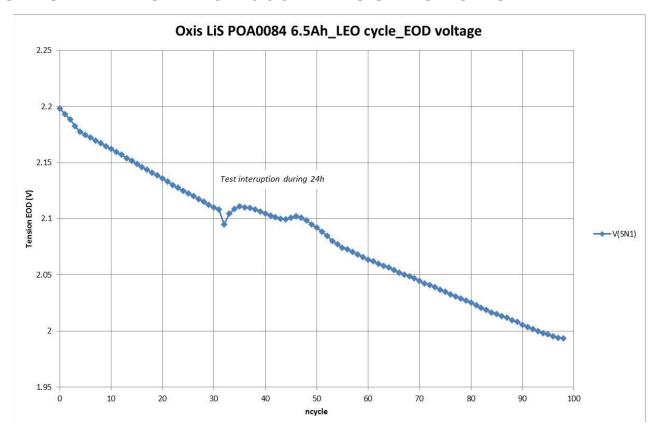
03 OXIS ENERGY ULTRALIGHT CELL RESULTS

OXIS ENERGY POA0084 RESULTS: C-RATE

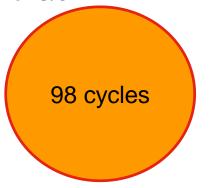
Source: B. Samaniego and al., «High specific energy Lithium Sulfur cell for space application", ESPC


OXIS ENERGY POA0217 RESULTS: C-RATE

Source: B. Samaniego and al., «High specific energy Lithium Sultur cell for space application", ESPC


OXIS ENERGY POA0084 RESULTS: SELF-DISCHARGE

Source: B. Samaniego and al., «High specific energy Lithium Sulfur cell for space application", ESPC 2016



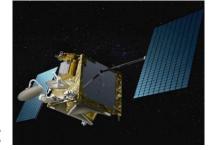
OXIS ENERGY POA0084 RESULTS: CYCLABILITY

Testing conditions:

- discharge at C/3 down to 20% of DoD has been selected
- with a charge rate of C/5.

Source: B. Samaniego and al., «High specific energy Lithium Sulfur cell for space application", ESPC 2016

04 BARRIERS AND OPPORTUNITIES FOR SPACE APPLICATIONS



ULTRALIGHT LI-S CELLS FOR SPACE APPLICATIONS: BARRIERS

Launcher applications:

- High self-discharge
- High dependency of the capacity on the current rate

Spacecraft applications:

- Poor cyclability (only 98 cycles achieved at 20% DoD)
- High dependency of the capacity on the current rate

ULTRALIGHT LI-S CELLS FOR SPACE APPLICATIONS: OPPORTUNITIES

Launcher applications:

- Expected mass savings : + 20% to + 40%
- Increase of the versatility
- Capability to address new missions

Spacecraft applications:

- Mass savings: + 20% to + 40% for HAPS
- Increase of the versatility

