Autumn School Flow

Barcelona - 12th-13th of November 2018

UNIVERSITAT DE BARCELONA

Pere L. Cabot

Electrochemistry

studies the properties and processes taking place in heterogeneous systems in which there is a potential difference between the constituent phases

REDOX reactions $v_0 O + n e^- \implies v_R R$

http://www.chimica-online.it/download/pila-daniell.htm

 $Zn^{2+} + 2e^{-} \rightleftharpoons Zn$ $Cu^{2+} + 2e^{-} \rightleftharpoons Cu$

NERNST EQUATION

$Zn + Cu^{2+} + 2 e_{Cu}^{-} \rightleftharpoons Cu + Zn^{2+} + 2 e_{Zn}^{-}$

$$E = E^{o} - \frac{RT}{nF} \ln \frac{a_{Cu} a_{Zn2+}}{a_{Zn} a_{Cu2+}}$$

(-) Zn
$$\rightleftharpoons$$
 Zn²⁺ + 2 e_{Zn}⁻
(+) Cu²⁺ + 2 e_{Cu}⁻ \rightleftharpoons Cu

+

Galvanic cells (direct conversion of chemical to electrical energy)

Batteries: anodic and cathodic reactants stored internally and cannot be replaced Primary: only one discharge (irreversible reactions)

Secondary or accumulators: repetitive cycles of charge-discharge (reversible reactions)

Fuel Cells: anodic (fuel) and cathodic (oxidizing) reactants externally and continuously fed

(Redox) Flow Batteries: reversible cell with external storage of electrolyte (they may be used like fuel cells or like rechargeable batteries)

Hybrid Cells: one electrode operates as in a battery, the other as in a fuel cell

Primary cells

Daniell cell (1836)

https://ca.wikipedia.org/wiki/Pila_Daniell#/media/ File:%C3%89l%C3%A9ment_Daniell.jpg

9

http://chemwiki.ucdavis.edu/Analytical_Chemistry/Electrochemistry/Case_Studies/Commercial_Galvanic_Cells

UNIVERSITAT DE BARCELONA

http://chemwiki.ucdavis.edu/Analytical_Chemistry/Electrochemistry/Case_Studies/Commercial_Galvanic_Cells

UNIVERSITAT_{DE}

Fuel Cells

H_2/O_2 Fuel Cell

http://chemwiki.ucdavis.edu/Analytical_Chemistry/Electrochemistry/ Case_Studies/Commercial_Galvanic_Cells

Fig. 13.45. Schematic view of the Zn-air battery consisting of a single cell with a central Zn anode facing two bifunctional air electrodes. (Reprinted from K. Müller, R. Holze, and O. Haas, "Progress Towards a 20 Ah/12V Electrically Rechargeable Zinc/Air Battery," in *Batteries for Portable Applications and Electric Vehicles,* C. F. Holmes and A. R. Landgrebe, eds., Electrochemical Society Proc. PV 97-18, pp. 859–868, Fig. 2, 1997. Reproduced by permission of The Electrochemical Society, Inc.)

Hybrid cell

Zn/air Semi-Fuel Cell

(-) $Zn + 4 OH^{-} \rightarrow Zn(OH)_{4}^{2-} + 2 e^{-}$ (+) $\frac{1}{2}O_{2} + 4 H^{+} + 2 e^{-} \rightarrow OH^{-}$

 $\operatorname{Zn} + \frac{1}{2} \operatorname{O}_2 + \operatorname{H}_2 \operatorname{O} + 2 \operatorname{OH}^- \rightarrow \operatorname{Zn}(\operatorname{OH})_4^{2-}$

Production of electrical energy from fossil fuels by means of the conventional technology:

Chemical energy \rightarrow thermal (heat) \rightarrow mechanical \rightarrow electrical

CARNOT'S CYCLE

Direct conversion in galvanic cells:

Chemical energy \rightarrow electrical

Measuring the discharge voltage

 $V_{\rm d} = I R_{\rm ext}$

$$P = I V_{c}$$

$$E = E_{eq(+)} - E_{eq(-)}$$

 $V_{\rm d} = k - IR_{\rm int}$

$$P = I V_{\rm d} = I (k - IR_{\rm int})$$

$$P_{\rm m} = I_{\rm m} V_{\rm m}$$

(with $I_{\rm m} = k / 2R_{\rm int}$)

$$V = E_{\rm c} - E_{\rm a} - I R_{\rm int} = E - |\eta_{\rm c}| - \eta_{\rm a} - I R_{\rm int} < E$$

Autumn School Flow Battery

Major factors contributing to the cell performance:

- Activation control
- Diffusion control
- Ohmic control

BUTLER-VOLMER EQUATION

(activation or charge-transfer control)

 $j = j_0 \left[\exp \left(\alpha_{ox} F \eta / RT \right) - \exp \left(-\alpha_{red} F \eta / RT \right) \right]$ j_0 is the exchange current density α_{ox} and α_{red} are the charge transfer coefficients

ACTIVATION OVERPOTENTIAL

High field for the anodic reaction (Tafel): $\eta_a >>0$ ($\eta_a >120 \text{ mV}$) $j_a = j_{o,a} [\exp(\alpha_a F \eta_a / RT)]$ $\eta_a = (RT/\alpha_a F) \ln (j_a / j_{o,a})$ High field for the cathodic reaction (Tafel): $\eta <<0$ ($\eta <-120 \text{ mV}$) $/j_c / = j_{o,c} [\exp(-\alpha_c F \eta_c / RT)]$ $\eta_c = - (RT/\alpha_a F) \ln |j_c / j_{o,c} / m_c / m_c + m_c RT)$

 $j = j_0 \left[(c_R^* / c_R^o) \exp(\alpha_a F \eta / RT) - (c_O^* / c_O^o) \exp(-\alpha_c F \eta / RT) \right]$

$$j = j_{o} \left[(1 - j_{ox} / j_{L,ox}) \exp(\alpha_{ox} F \eta / RT) - (1 - j_{red} / j_{L,red}) \exp(-\alpha_{red} F \eta / RT) \right]$$

When $j_{L,red} \ll j_{o} \gg j_{L,ox}$ the term into [] $\cong 0$

$$\eta_{d} = \frac{RT}{nF} \ln \frac{1 - \frac{j_{red}}{j_{L,red}}}{1 - \frac{j_{ox}}{j_{L,ox}}}$$

Anodic process in the cell $(j_{L,red} >> j_{red})$: $\eta_{d,a} = -\frac{RT}{n_a F} \ln (1 - \frac{j_a}{j_{L,a}})$

Cathodic process in the cell
$$(j_{L,ox} >> j_{ox})$$
: $\eta_{d,c} = \frac{RT}{n_c F} \ln (1 - \frac{j_c}{j_{L,c}})$

Major factors contributing to the cell performance

Autumn School Flow Battery

Kinetic equations for plain electrodes

 $V = I R_{\text{ext}} = E - \{ (RT / \alpha_{a}F) \ln (j_{a}/j_{o,a}) + (RT / nF) \ln (1 - [j_{a}/j_{L,a}]) \} -$

- { $(RT / \alpha_{\rm c}F) \ln |j_{\rm c}/j_{\rm o,c}| + (RT / nF) \ln (1 - [j_{\rm c}/j_{\rm L,c}])$ } - $IR_{\rm int}$

Linear region:

 $V = E - k_1 - IR_{\rm int}$

Limiting current:

 $V = E - k_2 - (RT/nF) \ln (1 - [j_a/j_{L,a}] - (RT/nF) \ln (1 - [j_c/j_{L,c}])$

When
$$j_a = |j_c| = |j|$$

 $V_d = I R_{ext} = E - \{a_a + b_a \ln |j|\} - \{a_c + b_c \ln |j|\} - c \ln (/j_L) / [|j_L/-/j|]) - I R_{int}$

It is necessary to fix 7 parameters: $a_a, b_a, a_c, b_c, c, R_{int}$ and j_L . When the cathode is limiting, 4 are enough: $\alpha_c, j_{oc}, R_{int}$ and j_L .

$$V_{\rm d} = I R_{\rm ext} = E - \{a_{\rm a} + b_{\rm a} \ln \left[|j/+/j_{\rm leak}| \right] \} - \{a_{\rm c} + b_{\rm c} \ln \left[|j/+/j_{\rm leak}| \right] \} - c \ln \{/j_{\rm L}| / \left[|j_{\rm L}/ - (/j| + /j_{\rm leak}|) \right] \} - I R_{\rm int}$$

Cell properties: Capacity (Ah): Q = ItPower (W): P = IVPower density (W kg⁻¹) Energy (Wh): U = QVEnergy density (Wh kg⁻¹)

http://commons.wikimedia.org/wiki/File:Nimhcharakteristikrp.png

13/11/2018

 $(\partial G/\partial \xi)_{P,T} = \Sigma v_i \mu_i = -nFE$ (sometimes called ΔG) $dG_{P,T} \le \delta w_{useful} = \delta w_{electric} \Rightarrow \Delta G = maximum useful work$ $\Delta S = -(d\Delta G/dT) = nF(dE/dT)$ $\Delta H = \Delta G + T \Delta S = -Q_t$ (Q_t = heat delivered)

Thermoneutral voltage $E_t = -\Delta H / nF = E - T (dE/dT) = Q_t / nF$ $E_t > 0$ if $\Delta H < 0$

$$-\Delta H = nFE - nFT (dE/dT) = nFE + Q_S$$

 $(Q_{\rm S} = \text{entropy term, energy not useful as electric energy})$ $O_{\rm S} = nF (E_{\rm t} - E)$

In discharge, $V_d < E$ and the excess energy delivered as heat is done by

$$Q_{\rm U} = nFE - nFV_{\rm d} \qquad (E \ y \ V_{\rm d} > 0)$$

Then, the overall heat delivered by the cell is

$$Q_{\rm P} = Q_{\rm S} + Q_{\rm U} = nF \left(E_{\rm t} - V_{\rm d} \right)$$

Theoretical specific consumption of the reactant per unit of energy (g_W^T)

$$Ag_2O + Zn \rightarrow 2Ag + ZnO$$
 $E_{ocv} = 1,60 V$
 $W_{max} = nFE_{ocv}$

$$g_W^T(Ag_2O) = 231,74 \text{ g} / 53,6 \text{ Ah} * 1,60 \text{ V} = 2,70 \text{ g/Wh}$$

 $g_W^T(Zn) = 63,37 \text{ g} / 53,6 \text{ Ah} * 1,60 \text{ V} = 0,76 \text{ g/Wh}$

Usage coefficient of the reactant (λ):

 $\lambda = g_W^T / g_W^P$ (normally between 0.2 and 0.98).

Where g_W^P is the practical specific consumption of the reactant

Theoretical specific consumption of reactants per unit charge (g_0^T)

 $Ag_2O + Zn \rightarrow 2 Ag + ZnO$ F = 96486 C = 26,8 Ah $g_Q^T(Ag_2O) = 231,74 g / 53,6 Ah = 4,32 g/Ah$ $g_Q^T(Zn) = 63,37 g / 53,6 Ah = 1,22 g/Ah$

Usage coefficient of the reactant (λ):

 $\lambda = g_0^T / g_0^P$ (normally between 0.2 and 0.98).

where g_0^{P} is the practical specific consumption of the reactant

Thermodynamic efficiency

(maximum)

 $\eta_{(\mathrm{T})} = E/E_{\mathrm{t}}$

Voltage efficiency

 $\eta_{\rm (V)} = V_{\rm d}/E$

Autumn School Flow

Barcelona - 12th-13th of November 2018

