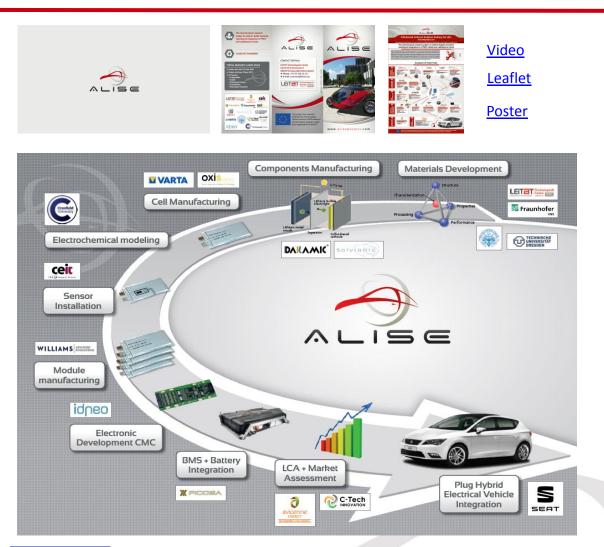
Beyond lithium ion workshop, October 2nd 2018, Acropolis, Nice, France

ALISE | Advanced Lithium Sulphur battery for xEV

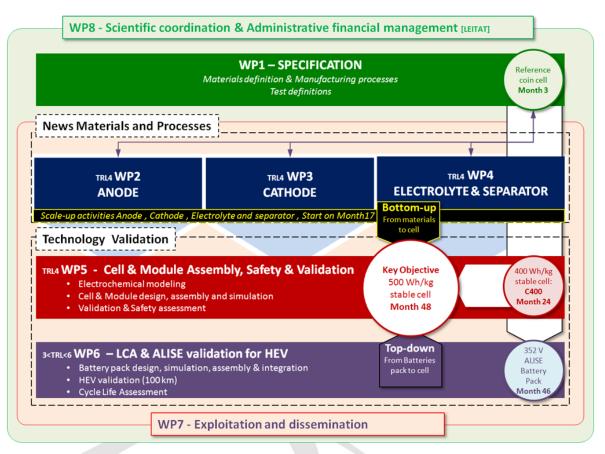
Christophe AUCHER (LEITAT)



ALISE European Li-S value chain

http://www.aliseproject.com/

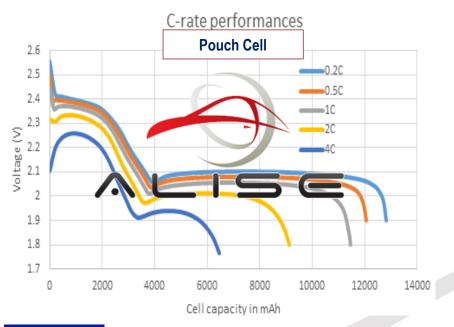
H2020-NMP-GV-2014 Grant agreement n° 666157. **EU contribution: 6,899,233 €** Duration : June 2015 – May 2019 Activities expected to focus on TRL4

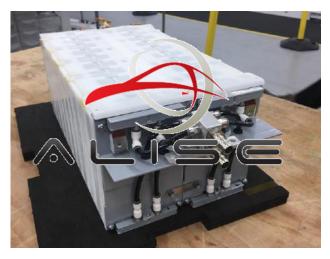

- 1. LEITAT (Coordinator)
- 2. AVICENNE ENERGY
- 3. Centro de Estudios e Investigaciones Técnicas
- 4. Fico Triad
- 5. IWS Fraunhofer
- 6. OXIS Energy Ltd.
- 7. SEAT
- 8. Solvionic
- 9. TUD Dresden University
- 10. VARTA Micro Battery
- 11. Politecnio di Torino (POLITO)
- 12. C-Tech Innovation
- 13. Daramic
- 14. Cranfield University
- 15. Williams Advanced Engineering
- 1. R&D Vehicle Systems Ltd (Terminated)
- 2. Vayon Group (Terminated)
- 3. IDNEO (Activities absorbed by Fico Triad)

KPI Objectives

- X2 PHEV electrical range
- Li-S cell (pouch, cylindrical)
- 400Wh/kg, 440Wh/L (TRL7)
- 500Wh/kg, 550Wh/L (TRL4)
- 2.000 cycles 80%BoL, 80%DoD (TRL4)
- 2.000 cycles 50%BoL, 50%DoD (TRL7)
- Reference Li-S (TRL3)
- Sulphur 80 %wt and 80% use
- 80% BoL at C/2
- Design, simulation, module, pack
- Module (82V)
- Pack (352V, 17kWh)
- Safety evaluation (HL4)

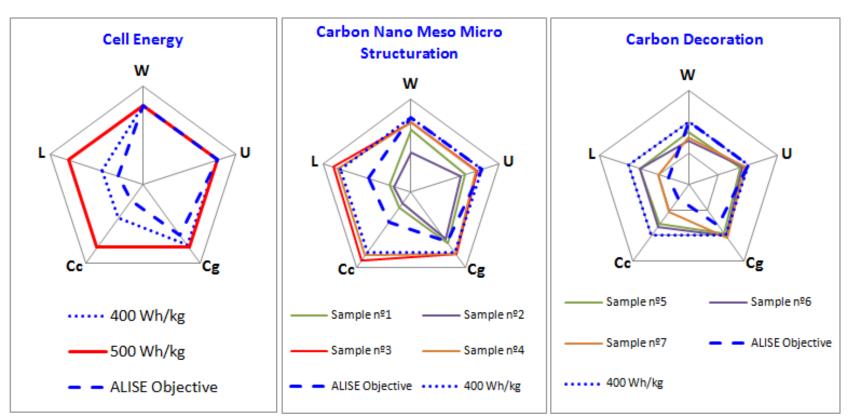
Cell KPI	PHEV cell Baseline	ALIOE		ALISE 2 nd GEN	ALISE Module target	ALISE 3 rd GEN target	
Date	May 2015	May 2015	May 2017	Aug. 2018	May 2019	May 2019	
TRL	9	5	5	5	5	4	
Safety (EUCAR Hazard Level)	HL4	HL4	HL6	HL6	HL6	HL4	
Nominal Capacity (Ah, 0.2C or lower)	-	-	12.5	14.3	14	16	
Nominal Capacity (Ah, 2C or higher)	25	25	9	11.8	10	12.5	
Gravimetric Energy (Wh/Kg)	130	400	290	310	>250	400	
Volumetric Energy (Wh/I)	222	440	200	240	>200	440	
Cycles (up to 1C or lower, DOD 80 % BOL 80%)	1600	800	50	50	50	300	


- **TRL**: 9 = commercial, 5 = module level test bench (82V), 4 = validated in lab. (16Ah)
- HL: 6 = using lithium as-received (1 short circuit failed and thermal runaway issue), 4 = using protected lithium
- Ah: %2 due to cell voltage and Li-ion pack Inverter Max./Min voltage + due to optimized Ah for Li-S
- **Power**: 72% of the C/5 BoL at 2C
- **Cycles**: 50 = using lithium as-received, 800 = using protected lithium
- □ Wh/I: Li-ion = Li-S



ALISE Results Highlight

- □ 2017, 1st GEN, >100 Units 290 Wh/kg, 200 Wh/L, 12.5 Ah pouch cells produced
- □ 2017 High performance cathode pilot production (>1.200 mAh/g, 72% of the C/5 BoL at 2C)
- **2017** 1st Li-S module for PHEV is built with 82 Lithium Sulphur cells (41s2p)
- 2018, 2nd GEN, >300 Units 310 Wh/kg, 240 Wh/L, 14.3 Ah pouch cells produced
- 2018, ALISE Li-S SoC estimator



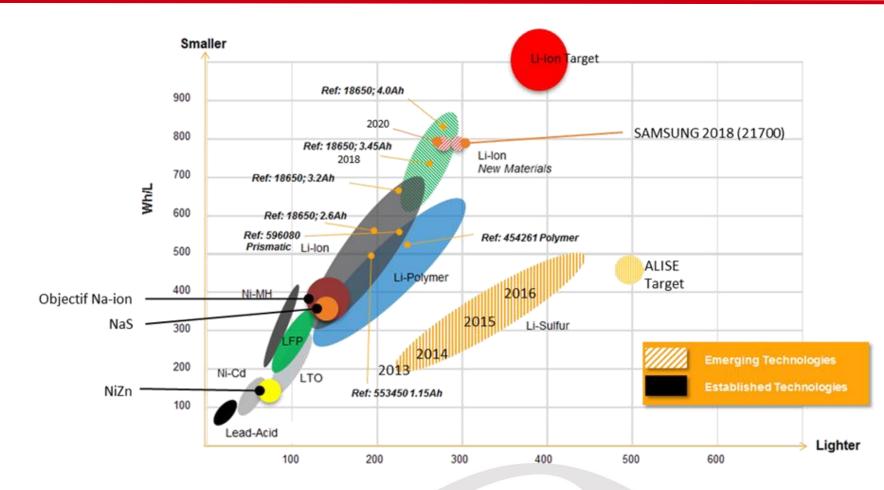
2.15 kWh, 82V, 140 Wh/kg, 125 Wh/l

Real: 21.47 Ah (instead of 25 Ah), 1.89 kWh, 125 Wh/kg, 117 Wh/l, 135 < W/kg < 158

> 70 %wt S, > 0.7 g/cm³, >1.350 mAh/g, >4 mAh/cm²

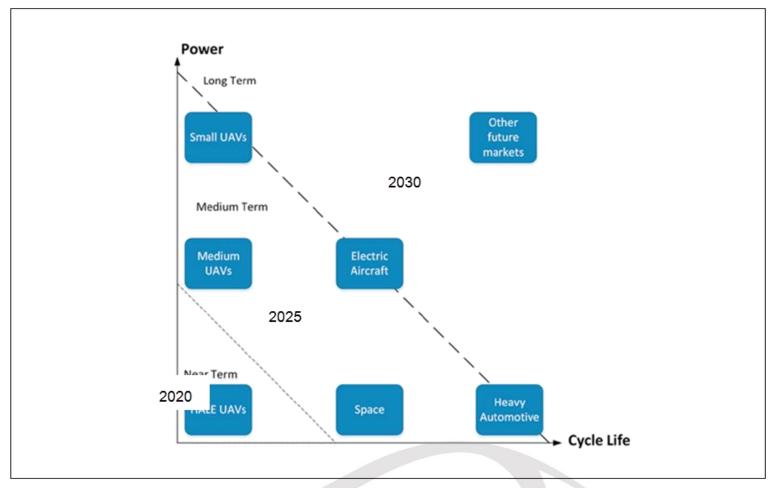
Achievement for LiS cathode online with ALISE objectives. Results are given for C/10 and not more than 5µl of electrolyte per 1mg of Sulphur. W: Sulphur Content in cathode (%wt), U: Sulphur utilization (%), Cg: Specific weight capacity of S @ 100% DoD (mAh/g), Cc: Areal specific capacity of S @ 100% DoD (mAh/cm²), and L: Loading of S (mg/cm²)

Li-S improvements


pacit	lighter technology y and low density then gh Wh/kg) Co G Mn				Li-S is not compact (low Wh/l, low power)				
			Safety	Wh/L	Power	Cycles	Cost		
e	To protect metallic lithium		000	•	•	••	Higher		
Anode	To make it thinner and to reduce lithium excess			000	•		••		
An	To develop lithium alternative			Lower	Lower	Lower	••		
	To improve stability			•	•	••	•		
<u>.</u>	To reduce electrolyte content			000	•		••		
Dielectric	To stabilize artificial SEI			•	•	••	•		
ele	To improuve PS solubity			•	••	000	•		
ā	To build selective membrane separator			•	•		Higher		
	Solid Electrolyte?			•	?	•	Higher		
e	To make denser and thinner electrode			000	•		••		
Cathode	To keep PS at the neighborhood of the cathode			•	00	••	•		
ath	To nano/micro structured for electrolyte content and S reaction sites			000	••	••	•		
Ű	To reach higher conductive network and mechanically stable				000	•	•		

Improvement rate expected: Low (●), Medium (●●) and High (●●●)

Extract from public ALISE delieverable: D7.4 Market Analysis


Figure 2: Projection of ALISE LiS technology Vs. other battery technology

Sources AVICENNE ENERGY 2018

Extract from public ALISE deliverable: D7.4 Market Analysis

Figure 4: Li-S cell applications versus improvements to power, cycle life and timescale-

Source: Lithium-Sulfur Battery Technology Readiness and Applications, Oxis, 2017

- Compromised between safety and performance has to be reached
- Lack of lithium protection and up scaling manufacturing associated
- Limitation in Wh/l, power and cycle versus intercalation chemistry
- European leading technology
- Free NMP and Co technology is provided
- x2 gravimetric energy density versus commercial lithium ion
- New SoC estimator and electronic control in development for usable LiS technology
- First Li-S PHEV module manufactured
- Electrical driving test will be simulated for both PHEV and BEV at module level
- Lab scale demonstrator (>15Ah) will be built from lithium protection researches

